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Abstract

The NMR of **Ti and “*°Ti has been observed in TiH, in the temperature range 155-310
K. The Knight shift and spin-lattice relaxation rate (T,7) ! were found to be temperature
dependent. The shift varied from 0.245 +0.002% at 310 K to 0.319+0.002% at 155 K,
whereas T, T varied from 224+1 s K at 310 K to 48.8+3 s K at 155 K. From the
temperature dependences of Knight shift and magnetic susceptibility a core polarization
hyperfine field of — (126 + 8) kOe was deduced. Applying the tight binding approximation
the data for the cubic phase (310 K) have been partitioned into spin (s,p,d) and orbital
(p,d) contributions.

In the tetragonal phase (below 310 K) a temperature dependence of the d band
density of states at the Fermi level was deduced. An influence of the lower symmetry
on the spin—lattice relaxation behaviour is discussed.

1. Introduction

As a part of our continuous investigation of NMR in the dihydride phases
of transition metals and their alloys [1-7], we have studied the **Ti and *°Ti
NMR in TiH,. The measurements of the Knight shift K and nuclear spin—lattice
relaxation rate (7,7) ! of transition metal hydrides can give information
about their electronic structure at the Fermi level which is difficult to obtain
by other experimental methods. To date, however, most experimental efforts
for TiH, hydride phase have been concerned with *H NMR [8-11].

Most valuable information on electronic structure can be obtained when
both components of a binary hydride are accessible to the NMR technique.
Such an opportunity appears in the cases of YH, [12, 13], ScH, [2], VH,
[3, 4] and NbH, [5], where NMR experiments for 'H as well as for the 5%,
458¢, 'V and %3Nb have been performed. All these nuclei are about 100%
abundant and, although #°Sc, 5'V and ®3Nb nuclei possess quadrupolar moment,
their resonances could be relatively easily observed because of the cubic
structure of their dihydrides.

The important contributions to the observed relaxation rates and Knight
shifts of metal nuclei in these dihydrides have been shown to arise mainly
from orbital and core-polarization hyperfine interactions with the d component
of the conduction electron wave functions at the Fermi level.

The NMR active isotopes of titanium, zirconium and hafnium all possess
low natural abundance, relatively small gyromagnetic ratio and simultaneously
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a rather large quadrupolar moment. For this reason, it has not yet been
possible to observe ""Hf resonance in HfH,, and that of °'Zr in tetragonal
ZrH, was detected only fairly recently (by Zogat et al. [14]). To our knowledge,
there have been only two experiments referring to the *"Ti and “°Ti resonance
in TiH, [15, 16]. Because of the poor experimental resolution achieved by
Frisch and Forman [15], they could not resolve the separate *'Ti and “°Ti
lines and therefore could only give a crude estimation of titanium Knight
shift. Goren et al. [16] observed close-lying *"Ti and *°Ti resonances in TiH,
in both cubic and tetragonal phases. The Knight shift was measured as a
function of temperature for TiH, and as a function of hydrogen concentration
in TiH,.

In the present study the temperature dependences of the *°Ti Knight
shift and spin-lattice relaxation rates have been measured in TiH,. The aim
of this work is to provide some comprehensive conclusions on the electronic
structure and the nature of hyperfine interactions in both the cubic and
tetragonal phases of TiH,. The results are compared with those obtained
from specific heat [17, 18], magnetic susceptibility [19] and recent theoretical
predictions [20—25]. Of particular interest are questions related to interference
effects in the relaxation rate due to possible s—d mixing. They can arise
because of the lower-than-cubic symmetry of the tetragonal phase. The
contribution of the p symmetry electronic states to the relaxation rate is
taken into account; a termn which has not been considered previously in the
analysis of the spin—lattice relaxation times for the hydrides is also discussed.

2. Experimental procedure

The TiH, sample, which was fine powder, was obtained from the Fluke
AG, Buchs SG (Switzerland). According to the supplier, the major impurities
are: nitrogen, 0.1% or less; chlorine, 0.08% or less; carbon, 0.03% or less;
silicon, 0.05% or less; iron, 0.09% or less; nickel, 0.05% or less; and magnesium,
0.04% or less. The sample was checked by X-ray diffraction (at room
temperature) to be single phase and the f.c.c. structure was identified with
the lattice parameter a =4.45240.004 A. The observed breadths of the X-
ray diffraction peaks, however, do not exclude possible small tetragonal
deformations at this temperature.

The *"Ti and *°Ti resonances were observed at a resonance frequency
of 16.924 MHz on a Bruker MSL 300S spectrometer equipped with a B-VT
1000 E temperature controller. The temperature was varied from 155 to
310 K. The lower value was limited by our present instrumentation and the
higher value corresponds to the temperature region where a diffusional
contribution to the relaxation is still inefficient.

The spectra obtained are Fourier transforms of typically 2000 signals
of free induction decays after a single pulse (5.25 us). The 90° pulse was
adjusted using a TiCl, reference sample. The dead time of the receiver was
about 200 ws for 2000 scans. The spin-lattice relaxation times T, were
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measured using a 180°-90° pulse sequence. The Knight shifts were measured
relative to TiCl,.

3. Experimental results

Figure 1 shows the *"Ti and *°Ti absorption lines recorded at 294 and
155 K. The two peaks are attributed to the two isotopes, the *°Ti (on the
left) having spin I=7/2 and *'Ti with I=5/2. At 310 K TiH, exists as
a cubic phase and should not show quadrupolar interaction. It is known
that below this temperature the transition to tetragonal phase is observed
and the axial ratio c/a decreases with decreasing temperature. Increasing
tetragonality induces the stronger quadrupolar interaction and the signal-to-
noise ratio decreases at lower temperatures. However, the 4"Ti and °Ti lines
are still well resolved at 155 K. The *°Ti resonance was chosen for further
analysis of the temperature dependences of both Knight shifts and spin—lattice
relaxation times since this resonance is more prominent than that of *'Ti,
thus offering a better signal-to-noise ratio.

Figure 2 shows the temperature dependence of the “°Ti Knight shift.
The observed lineshapes and temperature dependence of the Knight shift
are in full agreement with the data of Goren et al. {16]. The presently
reported value of K=0.245+0.002% for the Knight shift of the cubic phase
(at 310 K) is only slightly lower than the 0.252 +0.001% obtained by Goren
et al. [16] for temperatures above 300 K.
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Fig. 1. The absorption spectra of the Y’Ti and *°Ti resonances in TiH, at (a) 294 K and (b)
155 K. Note that the horizontal scale slightly differs in the two cases. Zeroes on the frequency
scale correspond to the *°Ti Knight shift value of 0.254%, measured with respect to the *°Ti
signal in TiCl,; at 294 K. The arrows indicate the posiiton of the *°Ti peak used for Knight
shift determination.
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Fig. 2. Temperature dependence of the **Ti Knight shift in TiH,.

Fig. 3. Recovery of the **Ti nuclear magnetization as a function of pulse spacing 7 at
T=294 K.
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Fig. 4. The (T, T) "2 values of *°Ti resonance for temperatures T from 155 to 310 K.

Figure 3 shows an example of the recovery curve of the nuclear
magnetization obtained at 7'=294 K. The experimental points are fitted to
a straight line. It intercepts the ordinate axis at [M. —M(7)]/2M, <1 which
indicates the partial saturation of the nuclear spin system. Despite this, the
spin—lattice relaxation time was derived from the slope which is consistent
with the conclusions of Simmons et al. [26].

Figure 4 shows the results of the T; measurements on *°Ti. We have
plotted (7,7)~'2 for *°Ti vs. temperature to show that its temperature
dependence corresponds qualitatively to that of (7,T)~'2 for 'H reported
in refs. 8, 10 and 11.

4. Discussion

4.1. Cubic phase

In the cubic phase, since s, p and d functions belong to different
irreducible representations of the cubic group, the relaxation rate is given
by a sum of the individual hyperfine contributions [27]:



57

(T1 T) ™" = 4y kn{[NJ(O)HET? + [N, (O)HIP P + [N, () HEI |2 e
+NJOHTTFE® + [No(O)HFT'F 3™ + [Na(OHF P F T} ¢y

where A=h/27 is Planck’s constant; y is the nuclear gyromagnetic ratio; kg
is Boltzmann’s constant; N,(0), N,(0) and N4(0) are the densities of states
at the Fermi energy from the s, p and d bands respectively for one direction
of the spin. Hf, HY®, HY® and HP are the s-Fermi contact, p orbital, d
orbital and d core polarization hyperfine fields respectively. Finally, Fg,
Fge, g™, Fg® and F$ are the reduction factors, which arise from the orbital
degeneracy of the p and d bands. In the case of cubic transition metals
Fg*=2/9,F3?=1/15 and F3®, F{® and F§ are functions of a single parameter
f(tzg) mdlcatmg the degree of admixture of f,;, and e, character of the d
functions at the Fermi level:

2 5
Fgr= gﬂtZg)l:z - §f(t2g)] 2
Fd‘p = m {5[f(tzg)]2 Gﬂtzg) + 6} 3
1 1
FP= 3 [Atx) P + By [1 -t (4

In analysing the Knight shift K and the molar magnetic susceptibility y in
the 3d transition metals several contributions must be considered in addition
to the diamagnetic terms: that of the usual s conduction electron susceptibility
Xs and the resulting Fermi contact hyperfine shift KT, as well as two
contributions arising from the presence of d electrons, the spin paramagnetic
susceptibility of the unfilled 3d conduction band x4 and the resulting induced
polarization of the core electrons, with the associated shift K$?, and lastly
the Van Vleck orbital susceptibility of the partially filled 3d band x¥', and
the resulting shift K'. A negligibly small core polarization comes from the
s and p conduction bands and they will be omitted in following expression
for the observed Knight shift:

Ky, =Ky. +KF+KP+KYY

2 -1

N <<7,2>> dea+(“'BN) I[HsXs+H§de+HXvXXv] (5)
and
Xobs = Xaia + X+ Xp + Xa+ X3' (6)
Xs=2uEN,(0) N
Xo =213 N,(0) (8

Xa=2pgN4(0)[1 = Ve Ng(01™! ®
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In these equations N is Avogadro’s number, up is the Bohr magneton, V¢
is the effective Coulomb potential which enhances the d band spin susceptibility
over the value given by the free electron approximation, Hy' is the d orbital
hyperfine field. It should be pointed out that H3™ in eqn. (1) represents an
average over the Fermi surface, while the HY' in eqn. (5) is weighted over
all states which contribute to x%'. Finally, (+*) and (') are the average
nth power of the electron orbital radius.

The diamagnetic contribution to the titanium Knight shift can be estimated
from the approximate expression [28]

Ky.(%) = — 100Anr, /ay (10)

where An represents the difference in 3d electron occupancy between the
shift reference and the hydride, and 7, and a, are the classical electron
radius and the first Bohr radius respectively. In the case of TiH; the shift
is measured with respect to TiCl,, and An is about 2, thus giving K4, = —0.015%.
The diamagnetic contribution to the observed molar susceptibility yu. was
then evaluated using (r~!) and (+*) values given for Ti** (3d®) by Freeman
and Watson [29] and we have obtained yg,~ —10X107¢ e.m.u. mol ™!,

Before the above equations can be used for further analysis, the values
of the appropriate hyperfine fields have to be known. H{ can usually be
estimated from the plot of Knight shift K vs. y if they both show temperature
dependence and if it can be assumed that both temperature dependences
are only caused by the d spin contributions. Such an opportunity appears
in TiH, where, using the present Knight shift data and magnetic susceptibility
data of Trzebiatowski and Stalinski [19], we have obtained
HP=—-(0.126+0.008) X 10® Qe (Fig. 5). This value is very close to
H®=-0.118X10% Oe calculated for h.c.p. titanium metal by Asada and
Terakura [30]. We note at this point that Goren et al. [16], combining their
titanium Knight shift data and proton spin—lattice relaxation rate data with
the theoretical data on N(0) reported by different authors, have estimated
HEP to be 0.154X10° Oe < |HP|<0.313 X 10° Oe.
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Fig. 5. The **Ti Knight shift K vs. magnetic susceptibility y, with temperature as the implicit
parameter. x(7) was taken from the work of Trzebiatowski and Staliriski [19].




59

The values of hyperfine fields we have used in the present analysis are
given in Table 1. HY, H3® and H3® are taken to be the same as those
calculated for h.c.p. titanium metal by Asada and Terakura [30]. Ebert et
al. [31] have approximated HY' by 0.85HS® in their analysis of titanium
Knight shift in h.c.p. titanium and we adapted this approximation in K for
our case of TiH,.

The band structure calculations for cubic titanium-rich Ti,_,Nb, [25]
dihydrides showed that the partial wave components of the electron densities
of states are N (0):N,(0):N4(0) =1:8:91. These ratios are nearly independent
of x (see, for example, ref. 25, Table 2). We have used them in our partitioning
procedure for the cubic TiH,. The f;, character of the titanium d electron
functions at the Fermi energy increases with decreasing concentration of
niobium [25]. When x— 0 we obtain f{t2,) =0.56. The remaining parameter
is N(0) which we have adjusted to give an agreement between the calculated
and observed relaxation rates. Our evaluation of N(0)=1.121 states (eV)!
compares favourably with that derived from the °>Nb Knight shift and relaxation
rate analysis in TiggsNbgosH; 94 [1] and falls in between the theoretically
calculated N(0) =0.85 states (eV) ™! [23], 0.95 states (eV) ™! [21], 1.03 states
(eV)~! [24], 1.33 states (eV)~! [22] and 1.73 states (eV)~! [20] for TiH,.

The estimated contributions of s, p and d bands to N(0) and (7, 7)!
are given in Table 1. It is apparent that the dominant relaxation process
arises from the d orbital contribution. This conclusion is insensitive to possible
errors in assumed values of the hyperfine fields. Subtracting the diamagnetic

TABLE 1

“*Ti magnetic hyperfine fields and conduction electron contributions to the total density of
states, and spin—lattice relaxation rate, in the cubic phase of TiH,*

Parameter Source Value
HF 4.993x10° Oe
Ho 0.916x10° Oe
HS® 0.21X10° Oe
HYY 0.179x10° Oe
HY —0.126X10° Oe
N,(0) 0.011 states (eV)~! (spin)~’
N, (0) 0.09 states (eV)~! (spin)~?
NJ(0) 1.02 states (eV)~! (spin)~!
Stz 0.56
Ve 0.34 eV
(1,7} s 0.0051 s~! K~!
Porv 0.0024 s™! K~
Daip 0.0007 s~} K-!
don 0.0296 s™! K~!
dap 0.0022 s~ K!
de, 0.0054 s~ K~!

*Based on the procedure described in the text.
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TABLE 2
The Knight shifts and magnetic susceptibility partitioned into their different terms®

Parameter Source Value

K (%) s 0.064
d (Van Vleck) 0.419
dep —0.228
Diamagnetism -0.01

x (X107% e.m.u. mol™?) s spin 0.7
P spin 5.8
d spin 100.9
d orbital 130.6
Diamagnetism -10.0

®0Obtained as described in the text.

and s and p contributions to the magnetic susceptibility and Knight shift
from the measured values and combining eqgns. (5), (6) and (9), we have
found the d spin and d orbital contributions as well as the magnitude of
Ve. Numerical data are presented in Tables 1 and 2. Again, the orbital
contributions dominate in both the Knight shift and the susceptibility.

Additional verification of our estimate of the temperature-independent
magnetic susceptibility contributions yx;, x, and yyy can be made by comparison
of the experimental susceptibility at about 0 K with the calculated value.
Subtracting N,(0) +N,(0)=0.101 states (eV) "' from N(0) =0.71 states (eV) !
evaluated by Bohmhammel et al. [18] from the low temperature specific
heat measurements for TiH, ¢y we obtain N,(0)=0.609 states (eV)~! and
from eqn. (9) xa(0 K)=49.7X107% em.u. mol™'. Hence xcac(0 K) =yan +
Xs+ Xp+ Xat+ xw =(—10+0.7+5.84+49.7+130.6) X 107¢=176.8 X 10~°
e.m.u. mol~!. The magnetic susceptibility data of Trzebiatowski and Staliriski
for TiH,;¢s [19] extrapolated to 0 K give yops=~190X107% e.m.u. mol~},
which compares favourably with that calculated above.

4.2. Tetragonal phase

For the tetragonally deformed CaF;-type structure of Till,, the appropriate
point group is Dy, (4/mmm) on the titanium sites. For the Dy, local symmetry
the s-like (=0) atomic function transforms as the A, representation; the
three p-like (I=1) and five d-like ({=2) functions from bases for irreducible
representations A,,, E,, A, B, DB:; and E, respectively. Since both
s(Y9) and s(¥?9) functions belong to the A,, representation, the resulting
(negative) interference term between Fermi contact and core polarization
interactions must be added to eqn. (1). The p and d dipolar contributions
to the relaxation rate are small, as in the case of cubic phase, and therefore
will be ignored in the following. Using the calculation procedure described
by Narath [32] and Asada and Terakura [30], we obtain a (7, 7)" ' formula
appropriate for the tetragonal phase and powder sample:
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(T T) ™' = 4why’ kp{[N,(0)HS” + [N, (O H PP F®
+ [NJ(OHF®PF§™ + [Ny(O)H P TPF 5 + 2HE HP|QA(0)[2} (11

with
rorb 4 2

Fe®= S MBI+ 5 S ED (12)
where

UED +fAs) =1 13
and

4 1
F:iorb___ §ﬂEg)[6f(Alg) +ﬂBlg) +ﬂB2g)+ gﬂEg)] (14)
1

F§P=f%A1) +%(B1g) +1%(Beg) + é‘fZ(Eg) (15)
where

JWA ) +f(B1g) +f(Bag) + 2f(E) = 1 (16)

It is evident from the above equation that the correction factor F;P™ is a
function of a single parameter whereas F¥™ and F* become functions of
three independent parameters expressing the relative weights of admixture
among A, By, By, and E, symmetry types of d functions at the Fermi
level. The quantity (4¢(0) in eqn. (11) is the so-called off-diagonal density
of states at the Fermi energy, discussed for the first time by Asada and
Terakura [30] in the case of relaxation rates in h.c.p. transition metals.

Since |[(¥3#(0)|? does not mean a product N4'¥(0)N4'(0), it is difficult
to predict the behaviour of the off-diagonal density of states from that of
the partial density of states.

A slightly different expression for the Fermi contact—core polarization
interference term was given by Narath [32] for the case of h.c.p. titanium
but we omit the details because of the other complications mentioned above.

Having gained some faith in the spin-lattice relaxation, Knight shift and
magnetic susceptibility partitioning for the cubic phase, we now examine
the predictions for the tetragonal phase.

Subtracting KT, K" and K,,, from the measured shifts we have obtained
the core-polarization contribution K and from eqgns. (6) and (9) we have
evaluated the densities of states N4(0) for each measured temperature.
Subsequently, we have plotted the experimental values of (7,7T)"' against
N3(0) (Fig. 6).

Figure 6 reveals two striking features. In the first place, the experimental
rates are seen to be a linear function of N%(0), thus indicating that the
magnitude of 47hy?kg[(HIP)2F 5™ + (HF)?F5P] is temperature independent.
Secondly, the point of intersection of that line at N3(0) yields a negative
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Fig. 6. Plot of (T, T)~! vs. the square of the d band density of states N3(0) for the tetragonal

phase of TiH,.

Fig. 7. Plot of the d orbital reduction factor F® for tetragonal symmetry as a function of
the orbital admixture coeflicients f{A,;) and flE,): —, solutions for given values of f{E,);
— ——, the area of allowed solutions.

value and this shows that the Fermi contact—core polarization interaction
coming from an s—d admixture in the A,, representation is an important
contribution to the total relaxation rate. Taking eqn. (16) into account the
expression for F™ can be rewritten in the form

1orb _ 2_0 l — ?.
F3o= 3j(Eg)[5 +flA10) SﬂEg)] an

which clearly shows that F@™ is independent of the ratio fiB;,)/f(Bzy)-
Dependence of the F'{™ factor on the orbital admixture coefficients f(4,,)
and f{E,) is illustrated in Fig. 7. The shaded area represents a set of solutions
for flA1p), EQ, f(B1g and f(B,y), which reproduce the straight line in Fig.
6. Again, the results suggest a considerable s—d admixture in the A,
representation.

5. Conclusions

For the cubic y phase of TiH, we have partitioned the *°Ti relaxation
rate, Knight shift and magnetic susceptibility into s, p and d band contributions.
The interactions we investigated include direct Fermi contact, orbital, dipole
and core-polarization interactions. We have found that the dominant con-
tributions arise from the d orbital terms. The core-polarization interaction
which is responsible for the temperature dependence of the measured Knight
shift provides, however, a minor contribution to the relaxation rate. We have
shown that the p component, which has so far not been considered in
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analysing experiments on the relaxation rates of transition metal hydrides,
amounts to about 7% of the total relaxation rate.

The temperature dependences of the *°Ti Knight shift and spin-lattice
relaxation (this work) as well as the previously reported data on 'H NMR
and magnetic susceptibility {10, 11, 17, 19] provide evidence that the total
density of states at the Fermi level in the tetragonal & phase of TiH, is
continuously reduced with decreasing temperature. There exists a strong
correlation between the splitting of the cubic into tetragonal lattice constants
with decreasing temperature and the corresponding changes in the magnetic
susceptibility, Knight shifts and spin—lattice relaxation rates. However, at the
present stage, it is difficult to draw quantitative conclusions about the
experimental dependences because the c/a ratio is temperature dependent,
and the bands at the Fermi level are continuously modified by the change
in temperature. A detailed assessment must await future calculations that
can better describe changes in the band structure with varying lattice constant.

Note added in proof

Very soon after this paper had been accepted, the authors realized that
eqns. 14, 15 and 17 were incorrect. Thus, Fig. 7 and the consequences
resulting from it are invalid. We hope to present the correct equations for
F2™® and F{P shortly in this journal.

We are sorry for any inconvenience caused by our delay.
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